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ON THE EFFECT OF THE INTERNAL VISCOSITY MECHANISM 
ON THE PERFECTLY PLASTIC BEHAVIOR OF MATERIALS* 

M.A. ARTEMOV and D.D. IVLEV 

A model is constructed for the mechanical behavior of a plastic material, exhibiting 
viscosity properties within a restricted range of deformation rates. A solution of 
the problem of behavior of a thick-walled pipe under internal pressure is given 
within the framework of this model. 

The author of /l/ dealt with the influence of prehardening on the perfectly plastic flow 
of a material. In this case the elasticity mechanism is internal (Fig.la). Below we consider 

the effect of internal viscosity mech- 

krAih;AT 

anism on the perfectly plastic behavior 
of a material. The corresponding mech- 
anical schemes are shown in Fig.lb and 
c. The scheme shown in Fig.lb assumes 

z 1 z I z 1 the continuity of the force adherence 
between the elements of dry friction, 

Fig.1 i.e. the incorporation of Maxwell-type 
viscosity element, and Fig.lc assumes 

the continuity of the kinematic adherence, i.e. the incorporation of the Kelvin-type viscosity 
element. It is shown that the internal viscosity element leads, in the case shown in Fig.lb, 
to accumulation of internal microdeformations in the course of a flow of a perfectly plastic 
material with yield point k1 + k*. In the second case (Fig.lc) we have the usual viscoelastic 
Bingham body. The influence of the viscosity on the mechanical behavior of plastic bodies 
was studied in /2,3/. In terms of the notation used in /3/ the material corresponding to the 
scheme depicted in Fig.la is denoted by the index Pep, that in Fig.lb by Pv’p and the one 

in Fig.lc by PV*P. 

1. We begin by considering the model Pv”p (Fig.lb). The motion of the first dry fric- 
tion element begins when the external force T reaches the limiting value k,. If the rate of 
motion of the first friction element is infinitesimal, then the viscosity element offers no 
resistance and the corresponding model behaves like a perfectly plastic body with yield point 
equal to kl (line ab in Fig.2). When the rate of motion increases, the viscous resistance 
grows and the corresponding model behaves like the viscoplastic Bingham body until the inter- 
nal forces do not succeed in bringing into motion the second internal friction element (line 

ac in Fig.2). When the loading rate is sufficiently fast, the internal friction element 
comes into operation and the corresponding model behaves like a perfect plastic body with 
yield point equal to k,+k, (line albl in Fig.2). Thus we see that under an infinitely slow 
loading rate the model in question behaves like a perfectly plastic body with yield point 

equal to k,,, andunder an instantaneous loading. like a perfectly plastic body with yieldpoint 
equal to kl+ k,. 

Let us denote by oil the real stress tensor, and by sif the internal stress tensor corres- 
ponding to the force transmitted through the friction element to the second friction element. 
Denoting the deviators of the corresponding tensors by a prime and assuming for simplicity 
that the material is incompressible, we write the condition of plasticity in the form 

(oil' - yj) (oi,' - si,') = kl*, k, = const (1.1) 

(If "I 
where k, denotes the yield point of the material corresponding to the 
limiting dry friction of the first friction element. In accordance 

a b with the associated flow rule, we have 

(1.2) 
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where eij is the plastic deformation rate tensor. For the internal plasticity element cor- 

responding to the second friction element we have 

si j9j < kg', h= COllSt (1.3) 

Let us denote by xij the internal microdeformations rate tensor corresponding to the rate 
of displacement of the second friction element. Then, according to (1.3) and the associated 

flow rule, we obtain 

x*j=Irs*j'? P=~1/%ij:ij (1.4) 

We write the relations characterising the mechanical behavior of the friction element in the 
form (n is the coefficient of viscosity) 

Sij' = Vmij, yj'sij' < ks' (1.5) 

Sij' = '1 (sij' - %ij)r 8jj’diJ’ 3 kp,* (1.6) 

and in case of (1.5) we have a viscoplastic Bingham body. 
Below we consider the case when tij'yj'= k,'. The behavior of the model in question is 

described by the equations (l-l)- (1.4),(1.6). Eliminating the quantity wj.from (1.4) and (1.6), 
we obtain 

S*j'=&E,j=+L*j (1.7) 

P*=*Gj' &-Gj-f 

Since p>O, the last equation of (1.7) yields 

qGj>k, (1.8) 

The above relation determines, provided that the inequality is strict, the condition of ac- 
cumulation of microdeformations. In the case of equality in (1.8) and we have p=O but from 
(1.4) it then follows that ej=O. Then from (l.l), (1.2) and (1.7) we obtain 

If the general condition (1.8) holds, then (l.l), (1.2), (1.4) and (1.6) yield 

VXZi eij =-aij’, 
kl+ke 

aij’aij’= (kl +k# (1.9) 

Consequently, as was said before, according to (1.9) , when the internal plasticity element is 
deformed, then the body behaves like a perfectly plastic body with yield point equal to h+ k,. 

In the case of rigid mechanical adherence between the plasticity elements and with q-00, we 
have, according to (1.6), eij=%j. When r1#0, then the body whose outside behaves as perfect- 
ly plastic, accumulates internal microdeformations. It can be assumed that the growth of the 
microdeformations results in fracture of the material. The fracture criteria can e.g. be 
introduced in the form 

SGj&<K, K=coIut 

Let us determine the dissipation function 

D = Oij'EQj (1.10) 

When condition (1.8) holds, then the dissipation function has, in accordance with (1.10) and 
the first relation of (1.9), the form 

D=R+b)fij (1.11) 

In case of equality in (1.8), from (1.11) it follows that 
D = D* = k, (kl + kJ/q 

Thus the condition of accumulation of microdeformations can be written in the form 

2. Consider the 
ponding to the force 
ment will be denoted 

D > D' 
model pc*p (Fig.lc). In this case the internal stress tensor corres- 
acting between the first (second) friction element and the viscosity ele- 
by sijcl, (according to silr2J. Then we have 

(Zij'_ "{,')(Zij'_ Sij') = kl‘, Fij = I (jij'_Sij') (2.1) 
, , 

‘ijtZ!%j(Z) = k,Z, Eij = l'Qj~2, 
I 

‘in11 - Q, = ‘lei j 
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from which we obtain 

The above relations define the viscoplastic Bingham body. 

3. We consider, as an example, 
upon by uniform internal pressure 

the axisymmetric behavior of a thick-walled pipe acted 
p, in the case of plane deformation. 

flaw of the material takes place (p and 0 are polar coordinates), 
When viscoplastic 

J@ - sp = v5k, f q (te - ‘& i.3.l 
Let a= u(P) denote the radial velocity. Then 

E. = duldp, "0 = u/p i3.2) 

The equation of incompresSibility yields 

tl = c/p, c = c (t) (3.3) 

and from (3.1)-(3.3) We obtain 

ze-~:o=~k,-+-2q+ (3.4) 

The equation of equilibrium now becomes 

(3.5) 

Integrating (3.5) we Obtain 

and from (3.4) we have 
(3.6) 

Remembering that op= --p When ~=a and e~=il when p= b (a and b denote the internal and 
external radius of the pipe respectively). We obtain from (3.61 

Increasing the internal pressure p leads to the appearance of a plastic zone in which 

se-sa,=l/Z(k,+k,f, ~p=Iri(k,+k&$p 

The energy dissipation in 
D = 5$&+0eeg =(s, - "&e@ 

In the viscoplastic flow zone (3.4) holds, therefore 

At the boundary 

Equations (3.7) 
ing the viscous 

separating the viscous and plastic zones 

D = L)* 

and (3.8) yield an equation for determining the radius of the boundary 
and plastic zones. Clearly, when 

1/-zki ln (b/a)< P < n(kt i-4) 1~ (d4 

then viscous and plastic zone both exist, while when 

we have the plastic zone only. 
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